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Abstract This paper presents a simple technique for

preparation of yttria-doped ceria (YDC) coated tetragonal

zirconia polycrystal (3Y-TZP) powder and its phase

development upon firing. The coating solution was pre-

pared using yttrium nitrate hexahydrate and cerium nitrate

hexahydrate as starting reagents. Thermochemical reac-

tions of the coated powder were studied using TGA and

FTIR while phase development upon firing was examined

using XRD. Inward diffusion of the coating YDC into the

TZP particles was monitored by observing the change of

crystal structure and lattice parameter as a function of

sintering temperature and time. At sintering temperature of

1300 �C for 1 h, crystal structure of the sample was still

tetragonal (t-ZrO2). Increasing sintering time to 5 h at

1300 �C, diffusion of YDC into TZP particles occurred

drastically and the structure was changed to cubic (c-ZrO2)

as indicated by the disappearance of (002)/(200) peak

splitting. Increasing sintering temperature to 1400 and

1500 �C, however, resulted in the co-existence of tetrago-

nal and cubic phases as indicated by the appearance of

triples around 72.5–74� 2h and also the decrease of cubic

lattice parameter. When the sintering temperature was

further increased to 1600 �C, lattice parameter was only

slightly changed, suggesting that inward diffusion of YDC

reached saturation point around this temperature.

Introduction

Cubic-stabilized zirconia (CSZ) has been used as an oxy-

gen ion conducting solid electrolyte in high temperature

(900–1000 �C) solid oxide fuel cell (SOFC) for a number

of years. The major problem with the current model of the

SOFCs is its capital cost. This cost is partly due to the high

operating temperatures and thus the need for very expen-

sive high temperature alloys in the system. An instant

solution is to reduce the operating temperature to 500–

700 �C so that conventional stainless steels can be used. To

do this, a new type of electrolyte is required and the most

promising one so far has been ceria-based materials. Ceria

(CeO2) has a fluorite structure and a lattice parameter of

5.41 Å [1]. Ceria doped with rare earth oxides such as

La2O3, Y2O3, Sm2O3, and Gd2O3 was reported to have high

ionic conductivity and may be used as a solid electrolyte in

fuel cells [2–7]. According to Steele et al., the negative

charge occurred in CeO2 lattice due to the aliovalence

substitutions were balanced by oxygen vacancies [8]. It

had been reported that ceria-based materials such as gad-

olinia-doped ceria (GDC), yttria-doped ceria (YDC), or

samaria-doped ceria (SDC), exhibited much higher ionic

conductivity than CSZ at intermediate temperatures

(*600 �C). Although ceria-based ceramics exhibited

satisfactory electrical conductivity, their mechanical prop-

erties especially fracture toughness were relatively poor.

Bending strength of the sintered GDC fabricated from

precipitated powders was found to be 143 ± 10 MPa at

room temperature and 115 ± 12 MPa at 800 �C [9]. Frac-

ture toughness of this material was only 2.48 MPa m1/2.

Improvement of mechanical properties of this ceramic was

important for fabrication and employment in SOFCs. An

attempt to improve mechanical properties of ceria-based

ceramic by addition of alumina was found to deteriorate its
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electrical conductivity especially the grain boundary con-

ductivity due to the formation of GdAlO3 phase [10].

Interaction between GDC electrolyte and yttria-stabilized

zirconia (YSZ) anode which gave rise to solid solution

phases was also problematic to the effectiveness of the cell

[11, 12]. This was because the solid solution phases

exhibited lower ionic conductivity than either GDC or

CSZ. Thus employment of ceria-based material in place of

CSZ still needs further work to eliminate this problem.

Solution coating technique had been employed to

improve properties of zirconia ceramics [13–15]. Improved

grain boundary conductivity and thermal shock resistance

of 2.9 mole% yttria-doped zirconia fabricated from a

commercial yttria-coated zirconia powder was reported

[13]. When this powder was compacted and sintered at

1300–1750 �C, a core-shell structure of monoclinic-

tetragonal was obtained. Fabrication of Ce–TZP for the

purpose of improved mechanical property by a solution

coating technique was also reported although a detail study

of phase development was not addressed [14, 15].

In this research, the authors intended to combine

mechanical properties of TZP and electrical properties of

YDC. TZP (2–3 mole% Y2O3) had been reported to exhibit

excellent mechanical properties [16–19]. When it is coated

with YDC and sintered, inward diffusion of YDC into the

TZP powder should occur. Crystal structure of the coated

TZP powder was controlled by changing the sintering

condition. At a proper sintering condition, a core-shell

structure could possibly be obtained.

Experiments

The mole ratio of the YDC coating solution to TZP powder

used in this research was 1:10 and the composition of the

coating was Ce0.90Y0.10O1.95. The molar percentage of

CeO2 and Y2O3 presented in the ceramic was thus 8.2 and

3.2, respectively.

The TZP powder was commercial powder with 3 mole%

yttria content and the specific surface area of 16 ± 3 m2/g

(TZ-3Y; TOSOH, Japan). Particle size of the powder was

calculated from the specific surface area using the

equation:

d ¼ 6=qAs ð1Þ

where As is the specific surface area (m2/g), q (6.05 g/cm3)

is the density value of TZP provided by the supplier, and d

is the particle diameter.

The coating solution was prepared as follows: first

stoichiometric amounts of yttrium nitrate hexahydrate

(Y(NO3)3�6H2O; Aldrich), cerium nitrate hexahydrate

(Ce(NO3)4�6H2O; Aldrich) were dissolved in water at

80 �C. PVA ((–CH2CH(OH)–)n; average Mw 85,000–

146,000; Aldrich) with the quantity equal to 1 wt.% of TZP

powder was added to the solution to improve the green

strength of the powder compact. When the starting reagents

were completely dissolved, weighed amount of TZP pow-

der was added. A small amount of Dispex (Ciba Specialty

Chemicals, UK) was also incorporated to control the dis-

persion behavior of the slurry. The slurry was continuously

stirred at a constant temperature of 80 �C on a hot plate

until the solvent was completely evaporated. The resulting

powder was then hand-ground and subsequently sieved

through a 150-mesh sieve. FTIR spectroscopy technique

(Perkin–Elmer Instruments, Spectrum GX, Germany) was

employed to examine the different constituents between the

as-coated powder and the powder calcined at 900 �C.

Thermal analysis of the coated powder was determined in

air using TGA/SDTA 851e STARe thermobalance (Mettler

Toledo, Switzerland). For powder compaction, the sieved

powder was uniaxially pressed at 100 MPa and sintered in

an electric furnace at 1300–1600 �C for 1–5 h in air. Phase

changes of the sintered samples and crystal size of the

coated powder were determined using XRD and X’pert

Data Viewer software (PANalytical, X’pertPro MPD, the

Netherlands). Calculation of crystal size was based on

Scherrer’s formula and full width at half maximum

(FWHM) value. To extend the understanding of phase

development upon firing, the coated powder was calcined

from 300 to 1,100 �C for 1 h prior to XRD analysis.

Microstructures of the as-coated powder and the as-sintered

samples were examined using SEM (JEOL, JSM–5410LV,

Japan).

Results and discussions

Basic studies of the starting powders

The SEM micrograph for the as-coated TZP powder is

shown in Fig. 1. Particle size of the powder calculated

from the surface area was in the range of 50–80 nm while it

was around 50 nm when calculated from the XRD spec-

trum. The FTIR spectrum for the as-coated powder and the

same powder calcined at 900�C are comparatively shown

in Fig. 2. The –CH2–, –CH3, and –OH groups indicated in

the spectrum belonged to the added PVA. The presence of

O–NO2 signals at 1616 and 1300 cm-1 in the as-dried

powder confirmed that cerium nitrate and yttrium nitrate

added to the TZP powder were still in the nitrate forms.

The absence of O–NO2 signals in the calcined powder

indicated that cerium and yttrium nitrate had already

changed to oxides below 900 �C. Thermal analysis result

of the coated powder is shown in Fig. 3. TGA curve

indicated two weight loss steps. The first step occurred

from room temperature to approximately 120 �C with the
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weight loss of 4% and the second step occurred at

*250 �C with the weight loss of 7%. DTA result showed

that both weight loss processes were endothermic with

different mechanisms. The first process occurred gradually

due to the loss of volatile components such as the crys-

tallized water or the added organic compounds while the

second process occurred abruptly due to the decomposition

of nitrates into oxides. The endothermic signal which

started around 1100 �C was probably due to the inward

diffusion of the coating YDC into the host TZP powder.

This explanation was confirmed with the XRD results in

‘‘Phase changes’’ section.

Phase changes

Coated powders

XRD results for the as-coated and the calcined powders are

shown in Fig. 4. The as-coated powder was mainly

tetragonal (t-ZrO2) with a minor amount of monoclinic

(m-ZrO2) phase. The CeO2 peaks started to appear after the

powder was calcined at 300 �C for 1 h. When the calci-

nation temperature was increased to 800–900 �C, the

intensity of the CeO2 peaks increased while those of

m-ZrO2 decreased and finally disappeared. Diffusion of

CeO2 into the host TZP grains could start at 1100 �C, as

indicated by the decrease of CeO2 peak intensity.

Compacted Powders

The XRD patterns of the representative samples are shown

in Fig. 5. Since the starting powder was coated with YDC

on the outer surface, distribution of YDC in the host TZP

grains at the beginning was nonuniform. As it was well

acknowledged, diffusion of an ion was a temperature and

time dependent process, the changes of the crystal structure

as a function of temperature and time was thus of our

Fig. 1 SEM micrograph of the YDC-coated TZP powders
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interest. An ionic radius of Ce4? is 0.92 nm while that of

Y3? is 1.014 nm [1]. When zirconium ion (ionic

radii = 0.84 nm) is substituted by ions with larger ionic

radii, structural change, lattice distortion, and XRD peak

shift corresponding to the change of lattice parameters

could occur. In this study, the changes of crystal structure

and lattice parameters were observed as a function of sin-

tering temperature and time. At the sintering condition of

1300 �C for 1 h, a trace of ceria was still observable and

the sample was still in the tetragonal form as indicated by

the (002)/(200) and (113)/(131) doublets. Increasing the

sintering time to 5 h at 1300 �C resulted in the change from

tetragonal to cubic structure as indicated by the change of

the doublets into single peaks. Besides, the existence of

ceria was no longer observed at this sintering condition.

When the sintering temperature was further increased to
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1400 �C for 5 h, the crystal structure was changed from

cubic to cubic ? tetragonal which was characterized by the

triplets around 72–74� 2h. Increasing sintering temperature

to 1500 and 1600 �C resulted in a more apparent

cubic ? tetragonal character as suggested by the appear-

ance of other triplets around 34� 2h. A similar phase

change from tetragonal to cubic and then to

cubic ? tetragonal structures was also observed in the

samples sintered from 1300–1600 �C for 3 h.

Additional to the phase change, the shift of cubic peaks

towards higher values of 2h was also observed when the

sintering temperature was increased from 1300 to 1600 �C

for 5 h. Therefore, lattice parameters of the cubic phase

were calculated from the whole spectrum following the

method described by Cullity [20] and plotted as a function

of sintering condition, as shown in Fig. 6. It is noted that
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some sintering conditions in which the cubic phase did not

exist were not included in the plot. When the sintering

temperature was increased from 1300 to 1500 �C, the cubic

lattice parameter was dramatically decreased. Further

increasing the sintering temperature to 1600 �C, the lattice

parameter was only slightly changed. In YSZ, the decrease

of cubic lattice parameter corresponded to the decrease of

yttrium content [21–24]. It was thus believed that a

decrease of cubic lattice parameter with an increase of

sintering temperature observed in this work was due to the

progressive inward diffusion of the Ce4? and Y3? stabi-

lizers from the outer rim of the grains into the core.

From the XRD results, diffusion of YDC into TZP could

probably be divided into three stages. At stage I

(*1300 �C for 1 h), diffusion was only slightly, so

tetragonal phase was still observed. At stage II (*1300 �C

for 5 h), drastic diffusion could occur on the outer rim and

the structure was changed to cubic. At the final stage

(*1400 �C and above), thoroughly diffusion had occurred

and the co-existence of tetragonal and cubic phases was

detected.

Microstructure

SEM micrographs in Fig. 7 show the dependence of

microstructure on sintering condition for the YDC-coated

TZP compact powder. The samples sintered at 1300 �C for

1 h exhibited typical characteristic of TZP ceramics, i.e.,

uniform grains with submicron in size (Fig. 7a). The XRD

analysis result had confirmed that the major phase of this

sample was tetragonal. Although small amount of CeO2

could be detected by XRD in the samples sintered at this

condition, it could not be observed in the SEM micrograph.

When the sintering time was extended to 5 h, the propor-

tion of larger grains with more than 1 lm in size

significantly increased (Fig. 7b), associated with the exis-

tence of the cubic phase in the XRD spectrum. Complete

densification and further grain growth were observed in the

samples sintered at 1500–1600 �C as shown in Fig. 7c and

d, of which the XRD results revealed the coexistence of

tetragonal-cubic phases.

Conclusion

YDC-coated TZP had been prepared by a solution coating

technique in which the YDC nitrates were coated onto the

TZP powder by a simple mixing method. The coating YDC

nitrates had crystallized into oxides around 250 �C. Inward

diffusion of YDC into the host TZP particles possibly

started around 1100 �C as suggested by both DTA and

XRD results. In the sample sintered at 1300 �C for 1 h,

partially diffusion of YDC coating occurred and the

observed structure was tetragonal. When the coated sample

was isothermally sintered for 5 h, the detected structure

had become cubic which was believed to be due to

extensive diffusion of YDC into the outer rim of TZP

grains. When the sintering temperature was further

increased to 1400–1600 �C, the XRD results displayed the

coexistence of tetragonal and cubic phases as well as the

Fig. 7 SEM micrographs

showing the effect of sintering

conditions on microstructure

development of samples

sintered at (a) 1300 �C for 1 h,

(b) 1300 �C for 5 h, (c) 1500 �C

for 5 h, and (d) 1600 �C for 5 h
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decrease of cubic lattice parameters. Such temperatures

probably promoted further diffusion and resulted in a

uniform distribution of dopant within the matrix of

zirconia.
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